Inhibition of Dengue Virus Entry and Multiplication into Monocytes Using RNA Interference
نویسندگان
چکیده
BACKGROUND Dengue infection ranks as one of the most significant viral diseases of the globe. Currently, there is no specific vaccine or antiviral therapy for prevention or treatment. Monocytes/macrophages are the principal target cells for dengue virus and are responsible for disseminating the virus after its transmission. Dengue virus enters target cells via receptor-mediated endocytosis after the viral envelope protein E attaches to the cell surface receptor. This study aimed to investigate the effect of silencing the CD-14 associated molecule and clathrin-mediated endocytosis using siRNA on dengue virus entry into monocytes. METHODOLOGY/PRINCIPAL FINDINGS Gene expression analysis showed a significant down-regulation of the target genes (82.7%, 84.9 and 76.3% for CD-14 associated molecule, CLTC and DNM2 respectively) in transfected monocytes. The effect of silencing of target genes on dengue virus entry into monocytes was investigated by infecting silenced and non-silenced monocytes with DENV-2. Results showed a significant reduction of infected cells (85.2%), intracellular viral RNA load (73.0%), and extracellular viral RNA load (63.0%) in silenced monocytes as compared to non-silenced monocytes. CONCLUSIONS/SIGNIFICANCE Silencing the cell surface receptor and clathrin mediated endocytosis using RNA interference resulted in inhibition of the dengue virus entry and subsequently multiplication of the virus in the monocytes. This might serve as a novel promising therapeutic target to attenuate dengue infection and thus reduce transmission as well as progression to severe dengue hemorrhagic fever.
منابع مشابه
RNA Interference Mediated Inhibition of Dengue Virus Multiplication and Entry in HepG2 Cells
BACKGROUND Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic str...
متن کاملInterference in dengue virus adsorption and uncoating by carrageenans.
This study demonstrated that the lambda- and iota-carrageenans, sulfated polysaccharides containing linear chains of galactopyranosyl residues, are potent inhibitors of dengue virus type 2 (DENV-2) and 3 (DENV-3) multiplication in Vero and HepG2 cells, with values of effective concentration 50% from 0.14 to 4.1 microg/ml. This activity was assayed by plaque reduction, virus yield inhibition and...
متن کاملThe inhibiting effect of the transcription factor p53 on dengue virus infection by activating the type I interferon
To investigate the role of the transcription factor p53 in the course of the dengue virus (DV) infection. The human hepatocellular carcinoma cell strain HepG2 with a low expression level of p53 was built by using the retroviral-mediated RNA interference technology, and was detected by Western blot. The wild group and the interference group were respectively infected by the type 2 DV. The viral ...
متن کاملA short treatment of cells with the lanthanide ions La3+, Ce3+, Pr3+ or Nd3+ changes the cellular chemistry into a state in which RNA replication of flaviviruses is specifically blocked without interference with host-cell multiplication
Alpha- and flaviviruses contain class II fusion proteins, which form ion-permeable pores in the target membrane during virus entry. The pores generated during entry of the alphavirus Semliki Forest virus have been shown previously to be blocked by lanthanide ions. Here, analyses of the influence of rare earth ions on the entry of the flaviviruses West Nile virus and Uganda S virus revealed an u...
متن کاملMechanisms of immune evasion induced by a complex of dengue virus and preexisting enhancing antibodies.
We have found that dengue virus (DENV) not only uses preexisting enhancing antibodies to promote its entry into Fc receptor-bearing cells but also exploits enhancing antibodies for intracellular immune evasion through 2 mechanisms. In the first mechanism, entry of DENV-antibody complexes into human monocytic cells activates negative regulators, dihydroxyacetone kinase and autophagy-related 5-au...
متن کامل